Very long baselines with a superbeam

Nick Samios

March 19, 2003

FOR BNL Neutrino Working Group.

Wide Band Conventional Beam from BNL to the Homestake Laboratory.

Neutrino Physics so far

- Evidence for Neutrino flavor change
 - Atmospheric neutrinos: SuperK
 - Solar: SNO, All previous radio-chemical measurements.
 - KamLAND: Confirm the solar LMA solution.
 - Limits on parameters from many accelerator and reactor exp.
 - LSND: To be addressed by mini-boone.
- Direct Neutrino mass
 - Oscillations: Neutrinos definitely have mass.
 - Tritium beta-decay: < 2.8 eV.
 - Double beta decay: mass $<0.3~\rm eV$ if Majorana.
 - Astrophysics: Large Scale Structure < 1 eV.
- Number of Neutrinos
 - Z width: 2.981 ± 0.008 active types
 - Limits on sterile neutrinos from solar, atmospheric results.
 - Big Bang Nucleosynthesis: 3 active neutrinos.

Neutrino Physics: Oscillations

Assume a 2×2 neutrino mixing matrix.

$$\begin{pmatrix} \nu_a \\ \nu_b \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \quad (1)$$

$$\nu_{a}(t) = \cos(\theta)\nu_{1}(t) + \sin(\theta)\nu_{2}(t)
P(\nu_{a} \to \nu_{b}) = |\langle \nu_{b} | \nu_{a}(t) \rangle|^{2}
= \sin^{2}(\theta)\cos^{2}(\theta)|e^{-iE_{2}t} - e^{-iE_{1}t}|^{2}
(2)$$

Sufficient to understand most of the physics:

$$P(\nu_a \to \nu_b) = \sin^2 2\theta \sin^2 \frac{1.27(\Delta m^2/eV^2)(L/km)}{(E/GeV)}$$

$$P(\nu_a \to \nu_a) = 1 - \sin^2 2\theta \sin^2 \frac{1.27(\Delta m^2 / eV^2)(L/km)}{(E/GeV)}$$

Oscillation nodes at $\pi/2, 3\pi/2, 5\pi/2, ... (\pi/2)$: $\Delta m^2 = 0.003 eV^2, E = 1 GeV, L = 412 km$.

Oscillation Nodes for $\Delta m^2 = 0.0025 \text{ eV}^2$

- Large effects: Multiple oscillation nodes.
- Low cross section at low energies
- Fermi motion limits resolution at low energies: wide band beam $(0.5 \rightarrow 8 \text{ GeV}).$
- $\Delta m^2 \approx 0.0025 eV^2$: Baseline > 2000 km.

Neutrino Physics: 3×3 Formulation

Bill Marciano, hep-ph/0108181

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
(3)

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$(4)$$

Neutrino Physics: the difficult stuff

$$P(\nu_{\mu} \to \nu_{e}) = 4(s_{2}^{2}s_{3}^{2}c_{3}^{2} + J_{CP}\sin\Delta_{21})\sin^{2}\frac{\Delta_{31}}{2} +2(s_{1}s_{2}s_{3}c_{1}c_{2}c_{3}^{2}\cos\delta - s_{1}^{2}s_{2}^{2}s_{3}^{2}c_{3}^{2})\sin\Delta_{31}\sin\Delta_{21} +4(s_{1}^{2}c_{1}^{2}c_{2}^{2}c_{3}^{2} + s_{1}^{4}s_{2}^{2}s_{3}^{2}c_{3}^{2} - 2s_{1}^{3}s_{2}s_{3}c_{1}c_{2}c_{3}^{2}\cos\delta$$
(5)
$$-J_{CP}\sin\Delta_{31})\sin^{2}\frac{\Delta_{21}}{2} +8(s_{1}s_{2}s_{3}c_{1}c_{2}c_{3}^{2}\cos\delta - s_{1}^{2}s_{2}^{2}s_{3}^{2}c_{3}^{2})\sin^{2}\frac{\Delta_{31}}{2}\sin^{2}\frac{\Delta_{21}}{2}$$

No matter effects in above formula

$$\Delta_{31} \equiv \Delta m_{31}^2 L/2E_{\nu}$$

$$\Delta_{21} \equiv \Delta m_{21}^2 L/2E_{\nu}$$

$$J_{CP} \equiv s_1 s_2 s_3 c_1 c_2 c_3^2 \sin \delta \tag{6}$$

$$A \equiv \frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}$$
(7)

To leading order in Δ_{21} (assumed to be small), one finds

$$P(\nu_{\mu} \to \nu_{e}) \simeq 4s_{2}^{2}s_{3}^{2}c_{3}^{2}\sin^{2}\frac{\Delta_{31}}{2} + \mathcal{O}(\Delta_{21})$$

$$A \simeq \frac{J_{CP}\sin\Delta_{21}}{s_{2}^{2}s_{3}^{2}c_{3}^{2}} \simeq \frac{2s_{1}c_{1}c_{2}\sin\delta}{s_{2}s_{3}} \left(\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}\right) \frac{\Delta m_{31}^{2}L}{4E_{\nu}} + \mathcal{O}(\Delta_{21}^{2})$$

$\nu_{\mu} \rightarrow \nu_{e}$ with matter effect

Approximate formula

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}\theta_{23} \frac{\sin^{2}2\theta_{13}}{(\hat{A}-1)^{2}} \sin^{2}((\hat{A}-1)\Delta)$$

$$+\alpha \frac{8J_{CP}}{\hat{A}(1-\hat{A})} \sin(\Delta) \sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)$$

$$+\alpha \frac{8I_{CP}}{\hat{A}(1-\hat{A})} \sin(\Delta) \cos(\hat{A}\Delta) \sin((1-\hat{A})\Delta)$$

$$+\alpha^{2} \frac{\cos^{2}\theta_{23} \sin^{2}2\theta_{12}}{\hat{A}^{2}} \sin^{2}(\hat{A}\Delta)$$

$$(8)$$

 $J_{CP} = 1/8\sin\delta_{CP}\cos\theta_{13}\sin2\theta_{12}\sin2\theta_{13}\sin2\theta_{23}$

 $I_{CP} = 1/8\cos\delta_{CP}\cos\theta_{13}\sin2\theta_{12}\sin2\theta_{13}\sin2\theta_{23}$

$$\alpha = \Delta m_{21}^2 / \Delta m_{31}^2, \ \Delta = \Delta m_{31}^2 L / 4E$$

$$\hat{A} = 2VE/\Delta m_{31}^2$$

Comments about matter effect

 $V = \sqrt{2}G_F n_e$. n_e is the density of electrons in the Earth.

$$\hat{A} = \approx 7.6 \times 10^{-5} \times (D/gm/cm^3) \times (E_{\nu}/GeV)/(\Delta m_{31}^2/eV^2),$$

Also recall $\Delta m_{31}^2 = \Delta m_{32}^2 + \Delta m_{21}^2$.

- This is a very approximate equation, not applicable below the first maximum.
- First term has the effect of $\sin^2 2\theta_{13}$ and matter.
- Second and third terms have effects of CP.
- Term with J_{CP} changes sign for $(Anti \nu_{\mu}) \rightarrow (Anti \nu_{e})$
- Last term is almost independent of Δm_{31}^2 and is purely dominated by the solar Δm_{21}^2

Scaling Laws for CP Measurement

Effect of δ_{CP} compared to first term in appearance.

 $R_{CP} \equiv \text{Second term divided by First Term.}$

$$R_{CP} \propto \sin \delta_{CP} \frac{\Delta m_{21}^2 L}{4E} \frac{1}{\sin 2\theta_{13}}$$

- $R_{CP} \propto 1/E$. Matter effect only at high E. Allows separation of matter effect and CP effect.
- $R_{CP} \propto L$. Event rate $\propto 1/L^2$. Statistical merit indep. of L for same sized detector.
- $R_{CP} \propto 1/\sin 2\theta_{13}$. Electron event rate $\propto \sin^2 2\theta_{13}$. Statistical merit indep. of θ_{13} .
- $R_{CP} \propto \Delta m_{21}^2$. Better CP resolution for higher Δm_{21}^2 .
- For given resolution on δ_{CP} detector size is independent of L.

General Features

- $0.5-1~{\rm GeV}$: $\Delta m_{12}^2~({\rm LMA})$ region.
- 1−3 GeV: CP large effects region
- > 3 GeV: Matter enhanced (ν_{μ}) , suppressed $(\bar{\nu}_{\mu})$. $(\Delta m_{32}^2 > 0)$ Region.

Exact numerical calculation

e.g. I. Mocioiu and R. Shrock, Phys. Rev. D62, 053017 (2000), JHEP 0111, 050 (2001)

Compare Neutrino to Antineu.

- $0.5-1~{\rm GeV}$: $\Delta m_{12}^2~({\rm LMA})$ region.
- 1 3 GeV: CP region
- > 3 GeV: Matter enhanced (ν_{μ}) , suppressed $(\bar{\nu}_{\mu})$. $(\Delta m_{32}^2 > 0)$ Region.

4 GOALS OF NEUTRINO OSCILLATION PHYSICS

- Precise determination of Δm_{32}^2 and $\sin^2 2\theta_{23}$ and definitive observation of oscillatory behavior.
- Detection of $\nu_{\mu} \to \nu_{e}$ in the appearance mode. If $\Delta m^{2}_{\nu_{\mu} \to \nu_{e}} = \Delta m^{2}_{32}$ then $|U_{e3}|^{2} (= \sin^{2} \theta_{13})$ is non-zero.
- Detection of the matter enhancement effect in $\nu_{\mu} \rightarrow \nu_{e}$. Sign of Δm_{32}^{2} ; i.e. which neutrino is heavier.
- Detection of CP violation in neutrino physics. Phase of $|U_{e3}|$ is CP violating and causes asymmetry in the rates $\nu_{\mu} \to \nu_{e}$ versus $\bar{\nu}_{\mu} \to \bar{\nu}_{e}$.

It will be good to do it all in same experiment with only neutrino beam (no antineutrino).

Summary of our study

- Baseline of > 2000 km with wide band conventional beams are the next step in accelerator neutrino physics.
- Extraordinary, large physical effects will be seen in such an experiment.
- Very good sensitivity to neutrino properties.
 - -<1% resolution on Δm_{32}^2
 - -<1% resolution on $\sin^2 2\theta_{23}$
 - Sensitivity to $\sin^2 2\theta_{13} > 0.005$ over a wide range of Δm_{32}^2
 - Sensitivity to CP violation.
 - Sign of Δm_{32}^2 over a wide range of parameters.
 - Measurement of Δm_{21}^2 in LMA region.
- Requires new thinking on how to build a beam and a detector. But experiment is technically feasible.

Comments

- Important ideas here are:
 - Long baseline to achieve large effects

 Low energy wide band beam to get spectra

 Beam is wide band, but low energy to make
 low backgrounds to ν_e appearance signature.
- Important difference between quark-matrix and neutrino-matrix
 - Neutrino oscillation effects are exactly calculable for any given set of parameters. (including matter)
 - For quarks we often need complex tools such as CHPT and Lattice to connect CKM-matrix to physical phenomena.
- It makes sense to make a neutrino oscillation experiment with large effects even if they are sensitive to multiple parameters.

BNL Wide Band. Proton Energy = 28 GeV

- New design spans 0.5-6 GeV
- Low ν_e background 0.7% 0.0073 ± 0.0014 (E734 1986).
- Low background from high energies (NC and ν_{τ} for ν_{e})
- 200 m decay tunnel
- Graphite target embedded in horn
- Target cooling achievable for 1 MW

The Accelerator

- Conceptually simple upgrade. No magic. Cost $\sim $100M$.
- Run 28 GeV AGS at 2.5 Hz to get 1 MW.
- Need faster proton source: Super Conducting LINAC at 1.2 GeV
- Current: $7 \times 10^{13} ppp$ at 0.5 Hz => LINAC: $10^{14} ppp$ at 2.5 Hz.

Beam on the Hill

- BNL-Lead 2540km BNL-Wipp: 2880km
- Avoids water table.
- Hills are inexpensive: highway ramps.
- Total cost \$35 M for 200 m tunnel.

Beam Layout

Beam 3d

Event Rates with Neutrinos

Assume 1 MW, 500 kT Fiducial, 5×10^7 sec running. $(1.22 \times 10^{22} \text{ Protons at 28 GeV.})$

Assume Water Cerenkov detector (with $\sim 10\%$ PMT coverage)

$CC \nu_{\mu} + N \to \mu^{-} + X$	51800
NC $\nu_{\mu} + N \rightarrow \nu_{\mu} + X$	16908
$CC \nu_e + N \to e^- + X$	380
QE $\nu_{\mu} + n \rightarrow \mu^{-} + p$	11767
QE $\nu_e + n \rightarrow e^- + p$	84
CC $\nu_{\mu} + N \to \mu^{-} + \pi^{+} + N$	14574
NC $\nu_{\mu} + N \rightarrow \nu_{\mu} + N + \pi^{0}$	3178
NC $\nu_{\mu} + O^{16} \rightarrow \nu_{\mu} + O^{16} + \pi^{0}$	574
$CC \nu_{\tau} + N \to \tau^{-} + X$	319
(if all $\nu_{\mu} \rightarrow \nu_{\tau}$)	

Backgrounds to clean (QE) events SMALL NC dominated by elastic and single π . Low τ production.

Neutral Current Events Neutrinos

Assume 1 MW, 500 kT Fiducial, 5×10^7 sec running. $(1.22 \times 10^{22} \text{ Protons at 28 GeV.})$

Assume Water Cerenkov detector (with $\sim 10\%$ PMT coverage)

$\boxed{\text{NC }\nu_{\mu} + N \to \nu_{\mu} + X}$	16908
Single π^0	3700
Single π^{\pm}	3500
$\nu + n \rightarrow \nu + n$	2000
$\nu + p \rightarrow \nu + p$	2000
Multi-pi $(0 \pi^0)$	2900
Multi-pi ($\geq 1 \pi^0$)	2900

Multiple pion events should be suppressed better than single π^0 events.

Both single and multi-pi event rate display the same tendency to fall rapidly with energy.

Node pattern provides high Δm_{32}^2 resolution. Energy calibration is very important.

Flux normalization not important for measurement of $\sin^2 2\theta_{23}$

Background shape can be measured independently Minimum systematics in ν_{μ} and $\bar{\nu}_{\mu}$ comparison

Node pattern provides high Δm_{32}^2 resolution. Energy calibration is very important.

Flux normalization not important for measurement of $\sin^2 2\theta_{23}$

Background shape can be measured independently Minimum systematics in ν_{μ} and $\bar{\nu}_{\mu}$ comparison

Node pattern provides high Δm_{23}^2 resolution. Energy calibration is very important.

Flux normalization not important for measurement of $\sin^2 2\theta_{23}$

Background shape can be measured independently Minimum systematics in ν_{μ} and $\bar{\nu}_{\mu}$ comparison

Test points for ν_{μ} disapp

Measurement of Δm_{32}^2

- Little dependence on systematic errors on resolution, backgrounds, energy linearity, or normalization.
- Ultimate resolution on Δm^2 depends on energy calibration. For perfect energy calibration $\pm 0.7\%$ possible.
- Energy calibration at < 1% in 1-5 GeV region needed.
- Can exclude $\sin^2 2\theta_{23} < 0.99$ at 90% C.L. Could be better with accurate background subtraction.
- No need of near detector for this measurement. Even a 10% systematic error on normalization does not bother measurement.

NC π^0 background for $\nu_{\mu} \rightarrow \nu_{e}$

 Q^2 for $E_v = 1-10$ GeV

$$q^2 = (p_N' + p_\pi') - p_N.$$

General feature of all neutral current processes:

Low q^2 or low hadronic energy in final state independent of neutrino energy.

NC π^0 background for $\nu_{\mu} \rightarrow \nu_{e}$

 \mathbf{E}_{π^0} for \mathbf{E}_{ν} = 1-10 GeV

- The NC energy distribution is independent of ν -energy except the kinematic limit.
- In $\nu_{\mu}N \to \nu_{\mu}N\pi^0$ events all energy ν produce peak at the same energy except the tail.
- For a very long baselines and wide band beam ν_e signal will be above 3 GeV with little π^0 background.

$\nu_{\mu} \rightarrow \nu_{e}$ All background

- Background includes $\nu N\pi^0$ and Coherent $\nu O^{16}\pi^0$.
- Efficiency for signal is $\sim 80\%$
- For $E_{\nu} < 2GeV \ N_{\pi^0} : N_{\nu_e} :: 59 : 35$
- For $E_{\nu} > 2GeV \ N_{\pi^0} : N_{\nu_e} :: 17 : 35$

Measurement of $\sin^2 2\theta_{13}$

ν_e APPEARANCE

$$\Delta m_{23}^2 = 0.0025 eV^2$$
, $\sin^2 2\theta_{13} = 0.04$.

Assume normal mass hierarchy. $m_3 > m_2 > m_1$ Matter effects included.

Measurement of $\sin^2 2\theta_{13}$

$$\Delta m_{23}^2 = 0.0015 eV^2$$
, $\sin^2 2\theta_{13} = 0.04$.

Assume normal mass hierarchy. $m_3 > m_2 > m_1$ Matter effects included.

Measurement of $\sin^2 2\theta_{13}$ 90% C.L.

Distinctive signature with multiple oscillations above 0.001 eV^2

Measurement of $\sin^2 2\theta_{13}$ 90% C.L. high Bckg.

Assume that the neutral current background is higher by factor of 2 over the entire spectrum.

Measurement of $\sin^2 2\theta_{13}$ 90% C.L.

BNL-HS(2540 km) good sensitivity to $\sin^2 2\theta_{13}$.

Improvement from 0.12 to 0.005 at 0.0025 eV^2 .

Signal very distinctive above 0.001 eV^2 .

Need harder beam to improve sensitivity above $0.004 \ eV^2$.

No experiment can go below $\sin^2 2\theta_{13} \approx 0.002$ with horn focussed beam due to systematic error on instrinsic ν_e background.

Mass Hierarchy

Natural Mass hierarchy: $m_3 > m_2 > m_1$ (NO) Reversed Mass hierarchy: $m_1 > m_2 > m_3$ (RO) Unnatural Mass hierarchy: $m_2 > m_1 > m_3$ (RO) $m_1 > m_2$ is ruled out if Solar LMA is the correct solution.

We would need to run Anti-neutrino beam to fully explore RO.

Mass Hierarchy Anti-neutrinos

Quasielastic cross section

An experiment searching for signal at high energies may not need much more anti-neutrino running than neutrino running.

δ_{CP} Measurement. BNL-to-HS, 2540 km, 1 MW, 500kT, 5×10^7 sec

CP parameter can be determined from only neutrino data. Good background subtraction can help.

Measurement of δ_{CP} ; Confidence Levels

$$\Delta m_{21}^2 = 6 \times 10^{-5} eV^2, \ \Delta m_{31}^2 = 2.5 \times 10^{-3} eV^2$$

 $\sin^2 2\theta_{12} = 0.8, \sin^2 2\theta_{23} = 1.0$

The region on the right hand side of curve can be excluded at 95% C.L. for NO and UO.

Measurement of $\delta_{CP} = 45^{\circ}$

90 % C.L. for δ_{CP} vs $\sin^2 2\theta_{13}$

No Systematic error

$$\Delta m_{21}^2 = 6 \times 10^{-5} eV^2$$
, $\Delta m_{31}^2 = 2.5 \times 10^{-3} eV^2$
 $\sin^2 2\theta_{12} = 0.8$, $\sin^2 2\theta_{23} = 1.0$
 $\delta_{CP} = 45^o$, $\sin^2 2\theta_{13} = 0.06$
68%, and 90% C.L.

Measurement of $\delta_{CP} = 45^{\circ}$ No anti-neutrino running.

90 % C.L. for δ_{CP} vs $\sin^2 2\theta_{13}$

Systematic error of 10% on backg.

$$\Delta m_{21}^2 = 6 \times 10^{-5} eV^2$$
, $\Delta m_{31}^2 = 2.5 \times 10^{-3} eV^2$
 $\sin^2 2\theta_{12} = 0.8$, $\sin^2 2\theta_{23} = 1.0$
 $\delta_{CP} = 45^o$, $\sin^2 2\theta_{13} = 0.06$
 68% , and 90% C.L.

Measurement of $\delta_{CP} = -90^{\circ}$

90 % C.L. for δ_{CP} vs $\sin^2 2\theta_{13}$

Systematic error of 10% on backg.

$$\Delta m_{21}^2 = 6 \times 10^{-5} eV^2$$
, $\Delta m_{31}^2 = 2.5 \times 10^{-3} eV^2$
 $\sin^2 2\theta_{12} = 0.8$, $\sin^2 2\theta_{23} = 1.0$
 $\delta_{CP} = -90^o$, $\sin^2 2\theta_{13} = 0.06$
68%, and 90% C.L.

Measurement of $\delta_{CP} = 135^{\circ}$

90 % C.L. for δ_{CP} vs $\sin^2 2\theta_{13}$

Systematic error of 10% on backg.

$$\Delta m_{21}^2 = 6 \times 10^{-5} eV^2$$
, $\Delta m_{31}^2 = 2.5 \times 10^{-3} eV^2$
 $\sin^2 2\theta_{12} = 0.8$, $\sin^2 2\theta_{23} = 1.0$
 $\delta_{CP} = 135^o$, $\sin^2 2\theta_{13} = 0.06$
68%, and 90% C.L.

Effect of δ_{CP} on the spectrum.

Effect of δ_{CP} in 3 energy bins

Event rate in 3 energy bins.

$$\Delta m_{21}^2 = 6 \times 10^{-5} eV^2, \ \Delta m_{31}^2 = 2.5 \times 10^{-3} eV^2$$

 $\sin^2 2\theta_{12} = 0.8, \sin^2 2\theta_{23} = 1.0$
 $\sin^2 2\theta_{13} = 0.06$

Error on δ_{CP} vs $\sin^2 2\theta_{13}$

Resolution δ_{CP} vs $\sin^2 2\theta_{13}$

Assume all other parameters are well-known.

$$\Delta m_{21}^2 = 6 \times 10^{-5} eV^2, \ \Delta m_{31}^2 = 2.5 \times 10^{-3} eV^2$$

 $\sin^2 2\theta_{12} = 0.8, \sin^2 2\theta_{23} = 1.0$

1 sigma error on δ_{CP} vs δ_{CP}

Full error from error contour. No knowledge of θ_{13} assumed, but all other parameters fixed.

$$\Delta m_{21}^2 = 6 \times 10^{-5} eV^2, \ \Delta m_{31}^2 = 2.5 \times 10^{-3} eV^2$$

 $\sin^2 2\theta_{12} = 0.8, \sin^2 2\theta_{23} = 1.0$

Measurement of Δm_{12}^2

v_e APPEARANCE FROM Δm_{21}^2 ONLY

$$\theta_{13} = 0, \ \Delta m_{12}^2 = 7.3 \times 10^{-5} eV^2$$

Excess of ~ 90 events. Must know background

Measurement of Δm_{12}^2

Independent $\sim 15\%$ measurement of Δm_{12}^2 Needs $\sim 10\%$ error on backg. => near detector.

Limit on Δm_{12}^2 vs $\sin^2 2\theta_{12}$

If no signal then a limit can be obtained that almost eliminates LMA.

Analysis Flow Chart

How the experiment will proceed:

- After 2 years of running get a very precise measurement of Δm_{23}^2 from disappearance and definitive signal of oscillations.
- From the measured Δm_{23}^2 predict the shape of the electron spectrum including matter effects.
- Do we have a peak in the electron spectrum at the expected energy? Yes No
- NO: Either $\sin^2 2\theta_{13}$ too small or inverted mass hierarchy $\Delta m_{32}^2 < 0$.
 - Get an independent measurement of Δm_{12}^2 at about $\pm 15\%$.
 - Run with anti-neutrinos. (next next slide)
- YES: GREAT NEWS! GOTO NEXT SLIDE.

- YES: There is a peak in the electron spectrum from the neutrino beam.
 - Use Δm_{12}^2 from SNO and KAMLAND and make a fit to the spectrum for CP angle versus $\sin^2 2\theta_{13}$.
 - Accumulate more statistics and make a combined fit for Δm_{12}^2 , δ_{CP} and θ_{13} .
 - Is the CP angle too small? NO YES
- NO: Finished! Still run antineutrinos for more precise δ_{CP} .
- YES: Run anti-neutrinos for more sensitivity on δ_{CP} .

Measure both $\sin^2 2\theta_{13}$ and δ_{CP}

- Running with anti-neutrinos if no peak in the electron spectrum from neutrinos
 Is there a peak in the electron spectrum from anti-neutrinos? Yes No
 - Yes The mass hierarchy is inverted. Proceed to measure $\sin^2 2\theta_{13}$ and CP angle with anti-neutrinos.
 - No $\sin^2 2\theta_{13}$ is too small. Proceed to social work.

If inverted hierarchy; measure both $\sin^2 2\theta_{13}$ and δ_{CP} .

OR $\sin^2 2\theta_{13}$ is just too small for conventional beam.

Summary of our study

- Baseline of > 2000 km with wide band conventional beams are the next step in accelerator neutrino physics.
- Extraordinary, large physical effects will be seen in such an experiment.
- Very good sensitivity to neutrino properties.
 - -<1% resolution on Δm_{32}^2
 - -<1% resolution on $\sin^2 2\theta_{23}$
 - Sensitivity to $\sin^2 2\theta_{13} \sim 0.005$ over a wide range of Δm_{32}^2
 - Sensitivity to CP parameter $\pm 25^{o}$ with neutrinos alone.
 - Sign of Δm_{32}^2 over a wide range.
 - Measurement of Δm_{12}^2 at $\pm 15\%$
- The electron spectrum has a lot of physics. It can be extracted using some outside information on parameter.

Measurement matrix

Neutrino running only; Running: 5×10^7 sec.

Baseline: 2540 km; beam: 1 MW at 28 GeV; detector: 500 kT

	Δm^2_{32}	$\sin^2 2\theta_{23}$	Δm_{12}^2	$\sin^2 2\theta_{13}$	δ_{CP}
				90 % C.L.	
$\Delta m_{32}^2 > 0.001$	< 1%	~ 1%	±15%	±0.01	$\pm 25^{o}$
$\sin^2 2\theta_{13} > 0.01$					
$\Delta m_{32}^2 > 0.001$	< 1%	~ 1%	$\pm 15\%$	Limit	No
$\sin^2 2\theta_{13} < 0.01$				< 0.005	Measure.

Not complete story, but an impression. Assume $m_3 > m_2 > m_1$.

Need good energy calibration for Δm_{32}^2 ($\sim 100 MeV$ LINAC?)

Need small error on backg. for Δm_{12}^2 and CP. (Near Detector)

What is Next?

White paper: hep-ex/0211001

Short paper: hep-ph/0303081

Can we use events such as $\nu_e + N \rightarrow e^- + \pi^+ + N$ Anti-neutrino sensitivity. Hierarchy

determination.

Parameter correlations.

Background determination with near det.

• The experiment is technically feasible.

Direct costs.

AGS upgrade, Hill, Proton transp., horns, decay tunnel: $\sim \$150M$

Detector: \$300 M for 10% PMT coverage.

This can be a staged program that starts with \$90 M at the AGS and \$150 M at Homestake for first critical results.

• The detector has applications far beyond accelerator neutrinos. And should have a very diverse and rich physics program.